Fast algorithm and implementation of dissimilarity self-organizing maps
نویسندگان
چکیده
منابع مشابه
Fast algorithm and implementation of dissimilarity self-organizing maps
In many real-world applications, data cannot be accurately represented by vectors. In those situations, one possible solution is to rely on dissimilarity measures that enable a sensible comparison between observations. Kohonen's self-organizing map (SOM) has been adapted to data described only through their dissimilarity matrix. This algorithm provides both nonlinear projection and clustering o...
متن کاملFast semi-automatic segmentation algorithm for Self-Organizing Maps
Self-Organizing Maps (SOM) are very powerful tools for data mining, in particular for visualizing the distribution of the data in very highdimensional data sets. Moreover, the 2D map produced by SOM can be used for unsupervised partitioning of the original data set into categories, provided that this map is somehow adequately segmented in clusters. This is usually done either manually by visual...
متن کاملA Dynamical Implementation of Self-organizing Maps
The standard learning algorithm for self-organizing maps (SOM) involves the two steps of a search for the best matching neuron and of an update of its weight vectors in the neighborhood of this neuron. In the dy-namical implementation discussed here, a competitive dynamics of laterally coupled neurons with diiusive interaction is used to nd the best-matching neuron. The resulting neuronal excit...
متن کاملSelf Organizing Maps: A Robust Implementation
Methods for visualizing multidimensional data are of great interest in computer science and engineering. One popular technique is selforganizing map, a type of neural network, that uses machine learning algorithms to map multidimensional data to a two-dimensional surface. They are widely used for exploratory data analysis and visualization and have been used to perform clustering and classifica...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 2006
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2006.05.002